"Fast-Response, Load-Matching Hybrid Fuel Cell"

Presented by:

Tom Key, EPRI PEAC Knoxville, TN

Presented at:

USDOE Distributed Power Program Review Meeting January 29-30, 2002 Arlington, VA

Project Information

Fast-Response, Load-Matching Hybrid Fuel Cell

Subcontract No. NAD-1-30605-15,

Awarded March 29, 2001

Awarded Under: NREL/DOE Distributed Power

System Integration Research and Development

Letter of Interest (LOI) Competitive Solicitation

NREL Technical Monitor: Tom Basso

Principle Investigators: Tom Key and Tom Geist,

EPRI PEAC Corp.

Project Perspective

- **Objective** Demonstrate the potential of hybrid DER technology with improved compatibility and performance characteristics.
- Opportunity Most environmentally preferred advanced generators, e.g. PV, FC, Wind and ?-Turbines, do not provide the robust source characteristics expected in power system design.
- **Scope** Design, assembly, system test and analysis of hybrid PEM fuel cell with high-power high-energy storage capacitors.

Additional Capacity Required for Starting Appliances

- Inrush Current and Effect on Service Voltage for Starting a Residential Heat Pump.
- Monitoring shows peaks are 6-8 times average power draw.

Effect of relatively large load change on DER power system

Potential system value of storagestabilized DER power system

Project Significance

- Pulse load capacity problem of typical PEM fuel cell is solved by hybrid application of ultra capacitors
- Hybrid is also shown to provide value added power conditioning for grid and load transients
- Application economics are enhanced because a smaller fuel cell rating is capable of serving typical inrush and pulse loads

Configuration of Hybrid Fuel Cell/Ultra Capacitor DER System

• Fuel cell system designed for robust grid connection and response with potential improve load and grid support via ultra capacitors

The Power of Reliability

Three 16-V double-layer electrochemical ultra capacitors

- Higher-power, efficiency, and cycle life, faster recharging compared to lead-acid batteries more modular than flywheels.
- 20% 30% of the energy in a typical auto battery

Copyright EPRI PEAC Corp. 2000

ESMA 8-16 V, 1 MJ, 34 kg

3-kW PEM

Fuel Cell System

16-Vdc Ultra
Capacitors in base
of fuel cell cabinet

Fuel Cell System Test Set Up

Fuel cell V-I curve

PEM Fuel Cell Step Load Response Measurement

• 20-70 amps at 50 volts (1000-3500W) in less than 250 ? sec.

Reduction of fuel cell standby losses (operating at zero H₂)

During standby testing, the losses were reduced by varying the voltage to the air blower via digital control.

Stack failure occurred at 25% power draw

Ultra capacitor cycle tests simulating loss of fuel cell voltage

Note: No measurable change after 2000 ride-thru cycles

Progress and Schedule

- Thru first 3 quarters completed separate evaluation of fuel cell and ultra capacitors
- Integrated ultra capacitors into fuel cell, demonstrated motor start capability
- 4th quarter will complete first year reports
- Year two, develop hybrid system test protocol and detailed evaluation
- Year three, add reformer module, more system tests, analysis and final report

Hybrid System Test Plans

- Evaluate hybrid under varying utility grid voltage conditions....
 - ANSI steady-state range, dynamic voltage sags and surges, harmonic distortion
- Evaluate hybrid with varying local loading
 - High inrush loads such as motor starting, step changes of linear and non-linear loads, transition from on-grid to offgrid operation
- Determine DER system energy performance in all operating modes

Motor and other End-Use Load Compatibility Test Facility

- Dynamic Performance Test Center
- Electro-Magnetic Compatibility
- Surge Test
- Power Conditioning lab

DER System Test Facility Knoxville, TN

Key personnel and experience

- Power System Design and System Integration
 - Tom Key and Gene Sitzlar, EPRI PEAC
 - Ben Banerjee, EPRI
- Fuel Cell System and Ultra Capacitors
 - Tom Geist EPRI PEAC and John Miller PhD, Consultant
 - Enable Fuel Cell
 - ESMA and Elit Ultra Capacitors
- System Performance Evaluation and Measurement
 - Rick Langley and Tom Cooke EPRI PEAC Lab

